Autonomous robots to help modernize grape, wine industry
Next spring, a small army of Cornell-developed PhytoPatholoBots (PPB) will be deployed to four grape breeding programs across the U.S. on a mission to guide the global grape and wine industry into the 21st century.
These autonomous robots will roll through vineyards, using computer vision to gather data on the physiological state of each grapevine. By combining this data with a decade of grape breeding breakthroughs, Cornell researchers are refining the PPB to allow breeders and growers to evaluate their vineyards – leaf by leaf, in real time, down to the chemical level.
The PPB rollout is happening in the first year of a new four-year project at Cornell funded through a nationwide $10 million grant from the National Institute of Food and Agriculture, Specialty Crops Research Initiative (NIFA-SCRI), and led by the University of Minnesota.
The grant extends NIFA-SCRI’s previously funded VitisGen1 and 2 projects, a decade-long collaboration whose national team of Cornell-led scientists discovered many of the genes that control important traits in grapevines, such as disease resistance, insect resistance, and fruit and wine quality. Armed with these valuable new genetic resources, grape breeders across the country have been able to stock their pipelines in record time with new varieties combining high quality and high disease resistance.
The new Cornell project focuses on bringing VitisGen’s genetic and technological innovations into the vineyard by combining plant pathology, computer vision, AI and robotics. This work is crucial for encouraging growers to embark on widespread plantings of new disease-resistant grape varieties made possible by VitisGen. Nearly all grape varieties grown today are highly susceptible to powdery mildew and downy mildew – which, for the last 140 years, growers worldwide have managed using multiple applications of chemical fungicides.
“Adoption of these new varieties alone has potential to reduce pesticide use by 90%,” said Lance Cadle-Davidson, co-project director and research plant pathologist at the USDA-ARS Grape Genetics Research Unit at Cornell AgriTech. “Now that breeders have introduced natural disease resistance into soon-to-be commercialized varieties, growers need updated guidance.” – Sarah Thompson, Cornell AgriTech.